The potential impact of climate change on Australia's soil organic carbon resources

نویسندگان

  • Peter R Grace
  • Wilfred M Post
  • Kevin Hennessy
چکیده

BACKGROUND Soil organic carbon (SOC) represents a significant pool of carbon within the biosphere. Climatic shifts in temperature and precipitation have a major influence on the decomposition and amount of SOC stored within an ecosystem and that released into the atmosphere. We have linked net primary production (NPP) algorithms, which include the impact of enhanced atmospheric CO2 on plant growth, to the SOCRATES terrestrial carbon model to estimate changes in SOC for the Australia continent between the years 1990 and 2100 in response to climate changes generated by the CSIRO Mark 2 Global Circulation Model (GCM). RESULTS We estimate organic carbon storage in the topsoil (0-10 cm) of the Australian continent in 1990 to be 8.1 Gt. This equates to 19 and 34 Gt in the top 30 and 100 cm of soil, respectively. By the year 2100, under a low emissions scenario, topsoil organic carbon stores of the continent will have increased by 0.6% (49 Mt C). Under a high emissions scenario, the Australian continent becomes a source of CO2 with a net reduction of 6.4% (518 Mt) in topsoil carbon, when compared to no climate change. This is partially offset by the predicted increase in NPP of 20.3% CONCLUSION Climate change impacts must be studied holistically, requiring integration of climate, plant, ecosystem and soil sciences. The SOCRATES terrestrial carbon cycling model provides realistic estimates of changes in SOC storage in response to climate change over the next century, and confirms the need for greater consideration of soils in assessing the full impact of climate change and the development of quantifiable mitigation strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential of Carbon Sequestration of Hammada salicornica Vegetation Type in Desert Areas (Case Study: South Khorasan, Iran)

Climate change due to increasing the level of greenhouse gases including CO2 is the main environmental issue of the world in the new century. One of the effective way for reducing atmospheric CO2 is carbon sequestration by plants and soils. A vast area of Iran has desert condition with special adapted plant species in which can be devoted for carbon sequestration. Hammada salicornica as a shrub...

متن کامل

Carbon sequestration in sugarcane plant and soil with different cultivation systems

Sugarcane (Saccharum officinarum L.) is a multi-purpose crop, mainly planted in South-western (SW) parts of Iran. However, the capability of sugarcane farms to sequestrate carbon into soil and plant is not well documented. In this research, the carbon sequestration in sugarcane plant and soil in a ratooning traditional cultivation system at the Amirkabir Sugarcane Agro-Industry Complex...

متن کامل

مدل‌سازی اثر تغییر اقلیم بر انتشار دی‌اکسیدکربن خاک در مراتع خشک (جنوب ایران)

Introduction: Carbon stored in soils particularly in arid rangelands soils is the most significant carbon sink in terrestrial ecosystems. In arid rangelands, Soils have special places in both carbon sequestration and mitigate global warming. Therefore, any small change in the soil organic carbon (SOC) leads to a significant impact on the CO2 concentration in the atmosphere. Studies have shown t...

متن کامل

Impact of Climate Change on Organic Carbon Removal Efficiency in Jajrood Catchment: From Dam to Water Treatment Plant

Background and purpose: Jajrood River is one of the major drinking water supply rivers in Tehran, so, the effects of climate change on its quantitative and qualitative resources are highly important. This study aimed at investigating the effect of climate change on organic carbon removal in Jajrood basin. Materials and methods: In this descriptive cross-sectional study, CanESM2 general circula...

متن کامل

The Impacts of Land Use Change in Soil Carbon and Nitrogen Stocks (Case Study Shahmirzad Lands, Semnan Province, Iran)

Soil carbon and nitrogen contents play an important role in sustaining soil physical and chemical quality and help to have healthy environments. The continues conversion of rangelands to arable lands has the potential to change carbon and nitrogen sequestration. In this study to evaluate the effects of land use change on soil organic carbon and nitrogen stock, forty samples collected from north...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Carbon Balance and Management

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2006